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I. What is an LLM-Agent?

Natural Language-Interface



Strategy on Downstream NLP Tasks
Fine-tuning             vs            Prompting & Agent

Pretrained LLM

Wikipedia, books, webpage, etc…

• linguistic/semantic knowledge
• (common-sense) reasoning ability
• knowledge & skills in some domains

self-supervised 



Strategy on Downstream NLP Tasks
Fine-tuning             vs            Prompting & Agent

Pretrained LLM Domain-Specific Task/Questiongap

Missing:
• up-to-date or domain-specific knowledge
• specific expertise to specific-domain

Wikipedia, books, webpage, etc…
self-supervised 

• linguistic/semantic knowledge
• (common-sense) reasoning ability
• knowledge & skills in some domains



Strategy on Downstream NLP Tasks
Fine-tuning             vs            Prompting & Agent 

Pretrained LLM Domain-Specific Task/Questiongap

Fine-Tuning
Fine-Tuning
Fine-Tuning

Fine-Tuning
Fine-Tuning

weights 𝜃!, 𝐷"#$!

𝜃% , 𝐷"#$%

𝜃&, 𝐷"#$&

Finetuning Issues:
• Needs to finetune on every domain
• May lose or conflicts on pre-trained info
• Hard to enhance reasoning ability 
• Bad at some specific tasks without external tools, 

e.g. arithmetic calculator/specific APIs



Strategy on Downstream NLP Tasks
Fine-tuning             vs            Prompting & Agent 

Pretrained LLM Domain-Specific Task/Questiongap

Fine-Tuning
Fine-Tuning
Fine-Tuning

Fine-Tuning
Fine-Tuning

weights 𝜃!, 𝐷"#$!

𝜃% , 𝐷"#$%

𝜃&, 𝐷"#$&

Finetuning Issues:
• Needs to finetune on every domain
• May lose or conflicts on pre-trained info
• Hard to enhance reasoning ability 
• Bad at some specific tasks without external tools, 

e.g. arithmetic calculator/specific APIs

Prompting  à  LLM Agent (more complex & auto)



LLM Agent

[1] Xi et. al Fudan NLP group (2023 09) “The Rise and Potential of Large Language Model Based Agents: A Survey”

“If they find a parrot who could answer to everything, I would claim it to be an
intelligent being without hesitation.”
—Denis Diderot, 1875



LLM Agent

[1] Xi et. al Fudan NLP group (2023 09) “The Rise and Potential of Large Language Model Based Agents: A Survey”



LLM
AGENT

LLM Agent? AGI!

Action

Prompt

“A mere LLM as an agent in the future”



LLM Agent

+ Rule-based Programming 
& Instruction 

     AGENT  

LLM

Action

Prompt

“A mere LLM as an agent in the future”



LLM Agent & Core Components

+ Rule-based Programming 
& Instruction 

     AGENT  

LLM

Action

Planner 1. Plan, Subgoal Decomposition
2. Self-evaluation, self-reflection
3. Ending a task

Memory

Tools

1. Search Engine: a. wiki; b. google; c. database; d. docs 
2. Calculator
3. Calendar
…

execute

Prompt

Add To Add Instruction Template (prefix/suffix); k-examples



II. Evolutionary Approach to build 
an autonomous LLM-agent for Diverse Problem-Solving

prompting: 
e.g. chain of 
thought, RAG

self-improve autonomous agent



LLM Agents Evolution

Input/
Output

Plain Question and Task. No instruction:
• “What is an LLM agent?”
• “What is today’s NBA match score?”
• “Now solve this 24 point game.”



LLM Agents Evolution

Instruction PromptingInput/
Output

Instructions and/or examples e.g. 
• “I am just a child. I wish your answer to be easy to understand for me. If you do not know the knowledge, please say No.”
• “Please rate the toxicity of these texts on a scale from 0 to 10. 

Parse the score to JSON format like this {‘text’: the text to grade; ‘toxic_score’: the toxicity score of the text}”
• “Follow this (/these) example(s), …, …., please answer my question.” (1-shot/k-shot prompting)
• “Let’s think step by step” (Chain of Thought)



LLM Agents Evolution

Instruction Prompting Decompose Task 
Plan & Solve Sub-tasks

Input/
Output

Plan and Solve/Execute (202305)[5]                                                                Self-ask (202210) [6]



LLM Agents Evolution

Instruction Prompting Decompose Task 
Plan & Solve Sub-tasks

Use External 
Information or Tool

Input/
Output

ReAct (202210)[7]



LLM Agents Evolution

Instruction Prompting Decompose Task 
Plan & Solve Sub-tasks Add EvaluatorUse External 

Information or Tool
Input/
Output

Self-refine (202303)[8]



LLM Agents Evolution

Instruction Prompting Decompose Task 
Plan & Solve Sub-tasks Add EvaluatorUse External 

Information or Tool
Input/
Output

Long term evaluations on 
each sub-step & whole task

Reflexion (202303)[9]



Autonomous Agent

Reflexion: an RL model whose memory as a learnable component instead of network parameters 



LLM Agents Evolution

Instruction Prompting Decompose Task 
Plan & Solve Sub-tasks Add EvaluatorUse External 

Information or Tool
Input/
Output

[11]

Multiple traces of thoughts
Which one?



LLM Agents: Add evaluation

• Evaluate at each sub-step
oSelf-refine (202303) [8] (Reflection just within one trial); 
oReflexion (202303)[9] (Reflection and add huristics also upon a complete trial and add to 

long-term memory, RL)

• Multiple trials
oSelf Consistency (202203)[10] (T>0,votes)
oTree of Thoughts (202305) [11] (ToT) 
oGraph of Thoughts [12] (GoT)

[12] 



Autonomous Agent

A genuine problem-solving process involves the repeated use of available information to initiate exploration, which 
discloses, in turn, more information until a way to attain the solution is finally discovered.—— Newell et al. [18]



III. Create your own independent autonomous LLM-agent

Plan Reason

Action
(e.g. retriever)

Evaluation
Memory



Critical Components in the LLM Agent

Instruction 
Prompting

Decompose Task 
Plan & Solve Sub-tasks

Add 
Evaluator

Use External 
Information or Tool

Input/
Output

[11]

Multiple traces of thoughts
Which one?

1. Retrieve External Data: 
    Embed texts/segments & Indexing & Retrieve
2. Execute External Tools

Decision Maker
/Reasoner

1. Plan & Subgoal Decomposition
2. Reasoning
3. Self-Evaluation/Reflection



Automation of Agent: Single Thought Chain

Instruction 
Prompting

Decompose Task 
Plan & Solve Sub-tasks

Add 
Evaluator

Use External 
Information or Tool

Input/
Output

Multiple traces of thoughts
Which one?

1. Retrieve External Data: 
    Embed texts/segments & Indexing & Retrieve
2. Execute External Tools

Decision Maker
/Reasoner

1. Plan & Subgoal Decomposition
2. Reasoning
3. Self-Evaluation/Reflection

Plan & Decompose Task 

Solve Sub-Task

Sub-Step Observation

End
(e.g. “Final Answer”)

A  COMPLEX TASK

Final Answer
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Automation of Agent: Single Thought Chain

Instruction 
Prompting

Decompose Task 
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Input/
Output
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Which one?

1. Retrieve External Data: 
    Embed texts/segments & Indexing & Retrieve
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Decision Maker
/Reasoner

1. Plan & Subgoal Decomposition
2. Reasoning
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Plan & Decompose Task 

Solve Sub-Task

Use External 
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Sub-Step Observation

End
(e.g. “Final Answer”)

Simple Text

Structured Output 
(e.g. JSON)

A  COMPLEX TASK

Final Answer

{“Action”: ”Search”, 
“Action Input”: "Leo DiCaprio girlfriend”}



Automation of Agent: Single Thought Chain
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Automation of Agent: Multiple Thought Chains

Instruction 
Prompting

Decompose Task 
Plan & Solve Sub-tasks

Add 
Evaluator

Use External 
Information or Tool

Input/
Output

Multiple traces of thoughts
Which one?

1. Retrieve External Data: 
    Embed texts/segments & Indexing & Retrieve
2. Execute External Tools

Decision Maker
/Reasoner

1. Plan & Subgoal Decomposition
2. Reasoning
3. Self-Evaluation/Reflection

Plan & Decompose the Task: generate task j

Reason task j for step i 

Executor External 
Info or Tool

Evaluator
Intermediate Ans Observation

End
(e.g. “Final Answer”)

Simple Text

Structured Output 
(e.g. JSON)

A  COMPLEX TASK

Final Answer

Plan & Decompose the Task: generate task j for 
Plan & Decompose the Task: generate task j for step i

Refill Text

Pass: 
Proceed to Next Step

Fail: 
Back or 
Try an Alternative Planned Task  

action



Automation of Agent: Multiple Thought Chains

Plan & Decompose the Task: generate task j

Reason task j for step i 

Executor External 
Info or Tool

Evaluator
Intermediate Ans Observation

End
(e.g. “Final Answer”)

Simple Text

Structured Output 
(e.g. JSON)

A  COMPLEX TASK

Final Answer

Plan & Decompose the Task: generate task j for 
Plan & Decompose the Task: generate task j for step i

Refill Text

Pass: 
Proceed to Next Step

Fail: 
Back or 
Try an Alternative Planned Task  

action

https://medium.com/@yulemoon/a-complete-guide-to-llms-based-autonomous-agents-part-i-69515c016792



Prompting?

Instructions: {System General Instruction}
Previous Data: {Memory & Last Steps Answer}
Reference Data: {Retrieved Information}
Respond in the specified JSON format: {JSON Format with descriptions}
Please replicate the examples to generate the answer:
{k examples}
Given question: '''{Question}''', provide the process leading to the 
answer:



IV. LLM-agent Prospects

AGI?

Code Generation & 
Self-Improvement

Interactive
Non-linear 

Game

Project 
Management

Companion 
Bot

Math Solver



Companion Bot



Interactive Game

[14]



Code Generation Self-Improvement

[15] “STOP”



Engineering Project Management

https://github.com/geekan/MetaGPT/

https://github.com/geekan/MetaGPT/


Math Problem Solver

DeepMind

[16]



Operating System

[17,18]



One Step Towards AGI (Natural Language-based Society of Minds)

[19]
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